
An Efficient Reuse of Legacy C-ISAM through
Java Native Interface

Raphael O. Anumba

CTT Research Lab
 29626 Teasedale Place, Castaic, CA 91384,USA

Abstract— The access methods to C-ISAM database table was
explored and implemented for use by any Java application.
Here, we presented some of the stages through which data can
be retrieved and modified via Java Native Interface (JNI),
using a series of instance methods to encapsulate the raw
manipulation of the inherent binary record of C-ISAM
database records. We particularly addressed the issue of
binary data access and conversion, using a runtime field table
routine. The paper went ahead to show the use of the static
schema class approach as an alternative.

Keywords— C-ISAM, C, Java, JNI, Database

I. INTRODUCTION

C-ISAM[8] is well known for its simplicity and its
inherent design to bypasses the overhead of a relational
database management system thereby provides fast,
efficient access to database records.

 Provides quick data retrieval using B+ tree-
index architecture.

 Supports multiple languages through global
language support (GLS).

 Offers flexible indexing options that let you
build indexes on multiple fields, a single field or
parts of a field.

 Includes efficient mechanisms for preserving
data integrity.[7]

To speed up the development of new application in Java
programming language, there is an eminent need to use the
C-ISAM legacy database tables. Here we presented an in-
depth approach of safely accessing C-ISAM using a JNI[1]
to access the complex binary records. JNISAM, a collection
of Java access classes made it possible to modularize and
segregate the various operations ranging from configuration
to record field access methods.

Not only that the use of JNISAM gave insight and easy
way to handle C-ISAM records, it also shaded light to an
endless possibility of the use of Indexed Sequential files in
an unorthodox ways to achieve speed and reliability. It may
also serve as an extended hash table for very large and
multiple data sets.

The benefits of JNISAM software development approach
includes the portability of Java and JNI which means that
JNISAM will ported to any C-ISAM platform, and any
internal change in JNISAM is transparent to the recompiled
JNI implementation.

II. STRUCTURE OF C-ISAM

A. Record layout
To describe the structure of a C-ISAM record we
assume and employee record emprec with 115 record
length. If the record was made up of fields p_empno,
p_empname, p_SSN, p_age and p_allowance; and filed
width of 4, 20, 9, 2 and 8 respectively, then the C
language equivalent record definition follows:

char emprec[115];
char *p_empno = emprec+ 0;
char *p_empname = emprec+ 4;
char *p_SSN = emprec+24;
char *p_age = emprec+33;
char *p_allowances = emprec+35;

B. Abstract representation
A record R in a file is of 4-tuple R(p, t, w, r), where p is

the pointer to a filed in R and t is the type of the field, w is
width or size of each field and r is the number of times a
filed can repeat such that for r=4, there exists pointes p0, p1,
p2, and p3.

Each field can be of type t={l, s, c, f} where l is of type
long of 4 bytes, s is short of 2 bytes, c is character of 1 byte
and d is double of 8 bytes.

TABLE I
RECORD DEFINITION

i p t w r Ɵ

0 emp_no l 4 1 0
1 emp_name c 20 1 4
2 SSN c 9 1 24
3 age s 2 1 33
4 allowances d 8 10 35

Record length L 115

A transformation of R can be made to find the offset Ɵ of
p such that Ɵi of pi will be

௜ߠ ൌ ൜	
݅	ݎ݋݂			0 ൌ 0,

௜ିଵݓ ∙ ௜ିଵݎ ൅ ݅	ݎ݋݂	௜ିଵߠ ൐ 0

The length L of a record R will be

ܮ ൌ෍ݓ௜ ∙ ௜ݎ ൌ ௡ݓ ∙ ௡ݎ ൅ ௡ߠ

௡

௜ୀ଴

TABLE I can be seen as a two dimensional matrix:
ሾ݌௜, ,௜ݐ ,௜ݓ ௜ሿ௜ୀ଴ݎ

௡ ,
such that for i=2, the field definition will be (SSN,c,9,1);

Raphael O. Anumba et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1812-1813

www.ijcsit.com 1812

III. JNISAM STRUCTURE

Without modifying the underlying table operations of the
exiting C-ISAM, JNISAM provided many functions that
mostly perform one-to-one operations and in some cases
provided a JNISAM function to encapsulate multiple C-
ISAM operations

A. Configuration functions.

Configuration functions provide means for the creation
of and dropping of C-ISAM table. The two main class
functions can respectively be represented as

ܯܣܵܫܰܬ ∙ ,ሺ݂݊ܽ݉݁݁ݐܽ݁ݎܿ ሾ݌௜, ,௜ݐ ,௜ݓ ௜ሿ௜ୀ଴ݎ
௡ ሻ and

ܯܣܵܫܰܬ ∙ .ሺ݂݊ܽ݉݁ሻ݌݋ݎ݀

Where fname is the name of the table to be created or
dropped.

B. Table access functions.

C-ISAM table can be accessed by calling a JNISAM
open function and deaccessed by calling a JNISAM close
function. To open a table we used the JNISAM class
method as:
ܨ ← ܯܣܵܫܰܬ ∙ ሺ݂݊ܽ݉݁ሻ݊݁݌݋
This will open a table with name fname and return an

object F that will be used to perform all file related
operations. The close function is a table specific operation,
hence:

ܨ ∙ ;ሺሻ݁ݏ݋݈ܿ

C. Record access functions.

Access to a C-ISAM record R can be gained by a find or
create method. While create method returns a record with
all initialized field, the find method returns the first record
that met some query criteria.

ܴ ← ܨ ∙ ሺሻ݁ݐܽ݁ݎܿ
ܴ ← ܨ ∙ ݂݅݊݀ሺሾܿܽ݅ݎ݁ݐ݅ݎሿሻ

With a newly created record R of file F, the insert
method will add R, after necessary field modification, to the
C-ISAM table. The fields of a retrieved record, R of file F,
may be modified and written back to the C-ISAM table
using the update method.

ܨ ∙ ሺܴሻݐݎ݁ݏ݊݅
ܨ ∙ ሺܴሻ݁ݐܽ݀݌ݑ

A record can be removed from the C-ISAM file with the
delete method if the record R met the query criteria.

ܴ ← ܨ ∙ ሿሻܽ݅ݎ݁ݐ݅ݎሺሾܿ݁ݐ݈݁݁݀

D. Field access functions.

With an instance of a record R the field value V of type
String, int, short or double, can be retrieved using getString,
getInt, getShort or getDouble method respectively.

௧ܸ ← ܴ ∙ ሻ݌ழ௧வሺݐ݁݃ ⟹

ە
ۖ
۔

ۖ
ۓ

݂ ← ሻ݌ሺ݈݀݁݅ܨݐ݁݃
ߠ ← ݂. ሻ	ሺݐ݁ݏ݂݂ܱݐ݁݃
ݓ ← ݂. ሻ	ሺ݄ݐܹ݀݅ݐ݁݃
ݐ ← ݂. ሻ	ሺ݁݌ݕܶݐ݁݃

.ܾ	࢔࢛࢚࢘ࢋ࢘ ,ߠழ௧வሺ݀ܽ݁ݎ ሻۙݓ
ۖ
ۘ

ۖ
ۗ

	

	
Where	f	is	a	field	object	in	R	accessible	by	name	p,	and	

b	is	also	an	object	in	R		holding	the	byte	array	of	record	
from	C‐ISAM	record.	
To	update	fields	of	a	newly	created	or	query	retrieved	

record,	we	used	a	set	method	that	can	take	the	name	of	a	
field	 p	 and	 a	 value	 V	 of	 any	 type	 String,	 int,	 short	 or	
double.	We	hence	abstract	the	operations	as:	

ܴ ∙ ,݌ሺݐ݁ݏ ܸሻ ⟹

ە
ۖ
۔

ۖ
ۓ

݂ ← ሻ݌ሺ݈݀݁݅ܨݐ݁݃
ߠ ← ݂. ሻ	ሺݐ݁ݏ݂݂ܱݐ݁݃
ݓ ← ݂. ሻ	ሺ݄ݐܹ݀݅ݐ݁݃
ݐ ← ݂. ሻ	ሺ݁݌ݕܶݐ݁݃

ܾ. ,ሺܸݒ݊݋ሺܿ݁ݐ݅ݎݓ ,ሻݐ ,ߠ ሻۙݓ
ۖ
ۘ

ۖ
ۗ

Just like the set method above, the values f, Ɵ, w and t

are retrieved in the same manner, but we used a conv
method to convert the value V to the field type t before
writing to the underlying byte array.

An existing record in some situation may require the
reset of the entire field before the update method; we
achieved this by implementing a clear method on the record
object R.

ܴ ∙ ሺሻݎ݈ܽ݁ܿ

IV. CONCLUSION

JNISAM has been efficiently implemented to use the
capabilities of Java Native Interface (JNI) to access the low
level C-ISAM byte records by querying, retrieving and
extracting fields to be used directly in Java applications.

The underlying C-ISAM field and methods were not
change in any form, rather a Java Native Interface were
implemented to wrap one or more C-ISAM member to
achieve a tread safe methods.

Apart from the normal access to native C-ISAM, other
advantages of the use JNISAM includes an instant sorting
of very large files, the use as external or extended Hash
table and can be used educationally as an experimental key-
value database.

REFERENCES
[1] Sheng Liang, Java Native Interface: Programmer's Guide and

Reference, Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, 1999.

[2] Java native interface specification (release 1.1), Sun Microsystems.
Jan. 1997.

[3] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and
D. Wang. “Safe Java native interface,” In Proc. 2006 IEEE
International Symposium on Secure Software Engineering, pp. 97--
106, Mar. 2006.

[4] C. J. Date. An introduction to database systems: vol. 1 (5th ed.)
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA
1990

[5] C. J. Date. An Introduction to Database Systems - Volume II.
Addison-Wesley Publishing Company, 1985.

[6] Rob Gordon. Essential JNI: Java Native Interface, Prentice Hall
PTR. 1998

[7] http://www-03.ibm.com/software/products/en/imformixcisam/
[8] Informix C-ISAM Index Sequential Access Method - Programmer’s

Manual (File Manager Version 5.0) Informix 1991

Raphael O. Anumba et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1812-1813

www.ijcsit.com 1813

